F1 - McLaren Racing - MCL35 - 2020 - side-face - reveal preview - Renault E-Tech 20

F1 2020 McLaren Racing MCL35 : forward insights dev’ [Renault E-Tech 20 Power Unit V6 à 90° 1.6L Turbo hybrid] Electronics McLaren Applied Tech.

13/02/2020 - Ewen LJ Team Principal DESIGNMOTEUR - Sport - , , ,

McLaren a présenté aujourd’hui la monoplace de F1 saison 2020 du Team McLaren Racing, dénommée MCL35, en direct du ‘McLaren Technology Centre’. McLaren a commencé à developper la MCL35, powered by le bloc Power Unit Renault E-Tech 20, dès 2019… Présentation.

Fearlessly Forward

“The pursuit of better.

 We go again. As we begin a new season in Formula 1, we carry a legacy on our shoulders. With pride. If there’s one thing we’ve learnt from 56 years on track, is that racing is a never-ending chase. As a team, with our fans and our partners.” #FearlesslyForward

McLaren Racing Team
https://www.instagram.com/p/BdxCdzMl1R8/

“…for I feel life is measured in achievement, not in years alone.”

Bruce McLaren
https://www.instagram.com/p/B7YX-sXHEbJ/

2020 MCL35 reveal

McLaren Racing today unveiled the team’s 2020 F1 car, the MCL35, live from the McLaren Technology Centre to a global audience. Drivers Carlos Sainz and Lando Norris, who both enter their second season with the team, proudly presented the car ahead of it taking to the track for the first time during pre-season testing next week.

Design McLaren Racing MCL35

F1 - McLaren Racing - MCL35 - 2020 - top front-face - Renault E-Tech 20 - 35A engine - McLaren Applied Technologies
F1 – McLaren Racing – MCL35 – 2020 – top front-face – Renault E-Tech 20 – 35A engine – McLaren Applied Technologies

McLaren set to work on the MCL35, which is powered by the Renault E-Tech 20, during 2019 as the team pursued the first phase of its performance recovery programme. The season saw the team climb to fourth in the FIA Formula 1 Constructors’ World Championship and provided valuable insights for the development of the MCL35, in what will be an intensely competitive 2020 Formula 1 season.

F1 - McLaren Racing - MCL35 - 2020 - front-face - Renault E-Tech 20 - 35A engine - McLaren Applied Technologies
F1 – McLaren Racing – MCL35 – 2020 – front-face – Renault E-Tech 20 – 35A engine – McLaren Applied Technologies

The MCL35 continues to sport the striking McLaren papaya and blue, the original colours chosen by founder Bruce McLaren and representing the team’s 57-year legacy in the sport. The dynamic new livery is the essence of form and function; designed to further increase stand-out on the grid while being fully optimised for racing performance.

F1 - McLaren Racing - MCL35 - 2020 - front side-face - Renault E-Tech 20 - 35A engine - McLaren Applied Technologies
F1 – McLaren Racing – MCL35 – 2020 – front side-face – Renault E-Tech 20 – 35A engine – McLaren Applied Technologies

Under the skin Teintes MCL35

“A single coat of AkzoNobel’s Intertherm 50 is 25-microns thick. Or should that be ‘thin’? Now we’ll admit, you’ve probably got no idea just how thick 25 microns is, but to put it into context, the width of a human hair is an ‘enormous’ 75 microns.
Why is this so important? The thinner the paint, the less it weighs, and keeping weight down is critical to performance.”



While Intertherm50 will reflect heat, it won’t insulate against it. Therefore, when we require a coating that will inhibit the transmission of heat, it’s time for a ceramic coating to step up to the plate.”


McLaren Racing Team

“When you think about paint on a Formula 1 car, you probably conjure beautiful images of iconic liveries in your mind. In fact, we’d wager you’re thinking about swathes of papaya right now. But did you know that much of the MCL35 will receive a lick of paint underneath its svelte, carbon fibre skin?”

“But just what makes this paint so special? As you might expect, it’s extremely resistant to heat. And when we say heat, we’re talking temperatures of up to 540°C.”

McLaren Racing Team

“If you were to flip over many of its sculpted body panels, you wouldn’t find exposed carbon fibre. Instead, you would be greeted by flashes of silver from AkzoNobel’s Intertherm50 paint.”


“We heavily rely on AkzoNobel’s Intertherm50 as our general heat-resistant, reflective coating.”


Steve Foster, Principal Composites Engineer

“We also apply it to the internal surfaces of the heatshield – so the unmoulded face gets a layer of Intertherm50 as another protective barrier from the heat.”


Sukhi Bhogal, McLaren Design Engineer
F1 - McLaren Racing - MCL35 - 2020 - side-face - Renault E-Tech 20 - 35A engine - McLaren Applied Technologies
F1 – McLaren Racing – MCL35 – 2020 – side-face – Renault E-Tech 20 – 35A engine – McLaren Applied Technologies

“Intertherm 50 is an aluminium pigmented, thin-film silicone coating, and its silver shade comes from the aluminium. It reflects heat due to the way in which the aluminium pigment aligns with the surface of the coating.”


“Aluminium has very low emissivity, so reflects a large amount of the infrared heat rays that hit it. This reflective property is why you see marathon runners wrapped in foil. The heat they give out is captured inside the blanket, which allows them to regulate their temperature as their body heat drops.”

George Sykes , Product Manager, AkzoNobel

Delve a little deeper and you’ll find there are a myriad of different materials and techniques to thermally manage the MCL35. We’re talking high-performance paints from our technical partner AkzoNobel, space-age foam from NASA (National Aeronautics and Space Administration), and heat-resistant composites.

McLaren Racing

“The design team and aerodynamicists will develop a shape, sculpted around the power unit and its exhausts using CFD (Computational Fluid Dynamics)

to optimise the airflow underneath the bodywork. Optimising this flow is vital to ensure we keep the car cooled to extract every ounce of performance from the engine, while delivering the aerodynamic performance with having such tight bodywork.



“If we are not able to expel the hot air from the radiators efficiently enough through to the back of the car, the car can overheat which in turn loses us performance.”

Sukhi Bhogal, McLaren Design Engineer

McLaren Racing team partners

F1 - McLaren Racing - MCL35 - 2020 - team partner listing - logo
F1 – McLaren Racing – MCL35 – 2020 – team partner listing – logo
F1 - McLaren Racing - MCL35 - 2020 - rear side-face - Renault E-Tech 20 - 35A engine - McLaren Applied Technologies
F1 – McLaren Racing – MCL35 – 2020 – rear side-face – Renault E-Tech 20 – 35A engine – McLaren Applied Technologies

Châssis McLaren Racing MCL35

F1 - McLaren Racing - MCL35 - 2020 - chassis - Akebono brake - Pirelli tyres - front wheel - preview
F1 – McLaren Racing – MCL35 – 2020 – chassis – Akebono brake – Pirelli tyres – front wheel – preview

under the hood chassis MCL35

  • Monocoque Carbon fibre composite, incorporating driver controls and fuel cell
  • Safety structures Cockpit survival cell incorporating impact resistant construction and anti-penetration panels, front impact structure, prescribed side impact structures, integrated rear impact structure, front and rear roll structures, Halo secondary roll structure
  • Bodywork Carbon fibre composite, including engine cover, sidepods, floor, nose, front wing and rear wing with driver-operated drag reduction system
  • Front suspension Carbon fibre wishbone and pushrod suspension elements operating inboard torsion bar and damper system
  • Rear suspension Carbon fibre wishbone and pullrod suspension elements operating inboard torsion bar and damper system
  • Weight Overall vehicle weight 746kg (including driver, excluding fuel)
  • Weight distribution between 45.4% and 46.4%
  • Electronics McLaren Applied. Including chassis control, power unit control, data acquisition, sensors, data analysis and telemetry
  • Instruments McLaren Applied dashboard

behind the wheel MCL35

“Often, we’ll cure the gold onto the carbon fibre. Take the carbon fibre brake drum of the MCL35, for example.

If we just let the heat spit out radially from the brake disc onto the wheel rim in an uncontrolled way, the wheel rim would melt and there would be a massive risk of failure. Not only that, but it would severely hinder our ability to manage tyre temperatures.”

“Although gold foil is very good at controlling infrared heat coming from the brake discs, it’s not great at stopping conduction of heat. And one of the ways in which we prevent conduction is to use silica-based aerogels ‘Solid Snake’ codename.”

“Possessing the lowest bulk density of any known solid (3%), this very fine foam substance is made up of over 95% air – providing about twice the resistance to heat per unit thickness compared to the next-best materials. It was developed by NASA for space shuttle programmes, but things get even cooler than codenames and space travel…”

“…might be able to find this substance ‘at home’ because it’s now frequently used for loft insulation.”

“Its low density means there are very few paths for the heat to conduct through, and any heat that does find its way through has to negotiate a very complex path before it gets to the other side.”

Steve Foster, Principal Composites Engineer

“(aerogels ‘Solid Snake’) Possessing the lowest bulk density of any known solid (3%), this very fine foam substance is made up of over 95% air – providing about twice the resistance to heat per unit thickness compared to the next-best materials. It was developed by NASA for space shuttle programmes, but things get even cooler than codenames and space travel…”



“…might be able to find this substance ‘at home’ because it’s now frequently used for loft insulation.”



“Its low density means there are very few paths for the heat to conduct through, and any heat that does find its way through has to negotiate a very complex path before it gets to the other side.”

Steve Foster, Principal Composites Engineer

F1 2020 chassis part MCL35

  • Brake system Akebono brake calipers and master cylinders
  • Akebono ‘brake by wire’ rear brake control system
    Carbon discs and pads
  • Steering Power-assisted rack and pinion
    Tyres Pirelli P Zero
  • Race wheels Enkei
  • Paint AkzoNobel Sikkens products
  • Cooling systems Marelli charge air, engine oil and ERS cooling systems
  • Advanced manufacturing Stratasys 3D Printing & Additive Manufacturing Mazak Advanced Technology Solutions

“You’ll find that some parts of the brake ducting on the MCL35 have a sandwich construction, consisting of a layer of gold foil, silica-based aerogel and carbon fibre.”

Steve Foster, Principal Composites Engineer

“To apply a ceramic coating to carbon fibre, first we apply a copper bonding coat to the composite and then the ceramic coat.”

“It provides a thermal barrier that protects the carbon fibre from delamination – fracturing into layers – and prevents resin from melting. Highly resistant to vibration and flexing, ceramic coatings are ideal for the MCL35 brake hubs.”

Steve Foster, Principal Composites Engineer

Moteur McLaren Racing MCL35

F1 - McLaren Racing - MCL35 - 2020 - Power Unit - Renault E-Tech 20 - 35A engine - McLaren Applied Technologies - rear-preview
F1 – McLaren Racing – MCL35 – 2020 – Power Unit – Renault E-Tech 20 – 35A engine – McLaren Applied Technologies – rear-preview

“Thermal management isn’t just about stopping heat, it’s also about dissipating any hot spots.”


“For example, you tend to get pinch points where a very hot part of the exhaust is close to another component. To counter this, we can use very conductive materials to direct heat away. If we don’t do this, the car could switch off because the electrical components are often temperature regulated.”


“Make no mistake, it’s a massive design effort. There’s so much performance to be gained from managing the flow structure through the car and protecting the MCL35 from the heat.”

Steve Foster, Principal Composites Engineer

under the hood Power Unit MCL35

“There’s a lot of heat generated by the engine and exhaust gas temperatures upwards of 1000°C. The surrounding components have to be shielded to protect them from this heat. Hence the reason for having heatshields.”

“We have to shrink wrap these shields as close as we can to the engine and exhaust because the aerodynamicists are looking to keep the bodywork as tight as possible.”

Sukhi Bhogal, McLaren Design Engineer

Renault E-Tech 20 Power Unit V6 1.6L

F1 - Renault F1 Team - R.S. 20 - 2020 - engine / moteur - Renault E-Tech 20 Power Unit V6 1.6L Turbo hybride
F1 – Renault F1 Team – R.S. 20 – 2020 – engine / moteur – Renault E-Tech 20 Power Unit V6 1.6L Turbo hybride

F1 2020 engine part MCL35

  • Power unit type Renault E-Tech 20
  • Minimum weight 145 kg
  • Primary PU components Internal Combustion Engine (ICE)
  • Motor Generator Unit – Kinetic (MGU-K)
  • Motor Generator Unit – Heat (MGU-H)
  • Energy Store (ES)
  • Turbocharger
  • Control Electronics

under the hood ICE (Internal Combustion Engine)

  • Capacity 1.6 litres
  • Cylinders Six
  • Bank angle 90-degree vee angle
  • No of valves 24
  • Max speed 15,000 rpm
  • Max fuel flow rate 100 kg/hour (above 10,500 rpm)
  • Fuel consumption 110 kg ‘lights to flag’ regulated fuel capacity limit
  • Fuel injection Direct injection, single injector per cylinder, 500 bar max
  • Pressure charging Single-stage compressor and exhaust turbine, common shaft

under the hood McLaren Applied Technologies

In 2009 McLaren Applied Technologies developed the electric drive system for the McLaren P1 road car. Key to the requirements of the world’s first hybrid supercar was that the addition of an electric drive system must improve the car’s performance on the racetrack and this demanded power-to-weight ratios that had only previously been seen in Formula 1 KERS systems. And so McLaren Applied Technologies took on the challenge of developing an E-Motor, Motor Control Unit (MCU) & 14V DC-DC Converter capable of bringing race car performance to the road.

– McLaren Applied Technologies

Chaque voiture de Formule 1, chaque voiture Indy américaine et chaque voiture NASCAR américaine possède une unité de contrôle moteur (ECU) qui a été fabriquée à Surrey par McLaren Tech.

Pourquoi McLaren, qui a une équipe en F1, a-t-il obtenu le contrat ? C’est parce qu’ils fournissent des systèmes de contrôle complets à F1 depuis 1993, qu’ils ont été un fournisseur de confiance pour de nombreuses équipes et qu’ils ont été les premiers à utiliser des logiciels basés sur des modèles au début de l’an 2000, plusieurs années avant que cette approche de développement de systèmes de contrôle soit introduite sur les marchés automobiles de série. Il s’agit là d’un élément essentiel du succès de l’ECU standard que l’on retrouve à bord de chaque voiture moderne, civile, de série et chaque constructeur a ses fournisseurs spécialisés.

La saison 2008 de F1 restera dans les mémoires comme le début d’une croissance rapide dans l’utilisation des ordinateurs, des capteurs et des contrôleurs et des dispositifs dans les voitures de course avec d’importantes ressources de recherche et de développement à l’utilisation de composants normalisés et de l’infrastructure, et sa multitude d’innovations. Chaque équipe F1 a mis en réseau et utilise des circuits normalisés pour l’unité de contrôle électronique, le fameux ECU, pour Electronic Control Unit.

Ceci est rendu possible grâce au partenariat entre les entreprises McLaren Electronic Systems (MES) et Microsoft résultant du contrat avec la FIA (Fédération Interationale de l’Automobile), l’institution internationale qui est l’organisme de réglementation pour tous les championnats du monde de course automobile. Bien que l’appareil soit « standard », l’ECU (Electronic Control Unit) est en fait un système très sophistiqué qui jouera un rôle clé dans le développement de la voiture du futur, tant dans les voitures que dans les voitures de course pour une utilisation quotidienne. Éléments du système conçu pour surveiller la performance de la voiture de course.

« L’électronique sur les voitures de F1, soit pour le contrôle, soit pour la télémétrie. Il n’y a pas grand-chose d’autre autorisé. Il y a 120-130 capteurs sur une voiture de Formule 1. Un quart d’entre eux sont pour le contrôle, le reste est de voir ce que la voiture fait : mesurer les positions, les températures et les mouvements. »

Peter van Manen, Managing Director of McLaren Electronics (quotes 2014)

under the hood energy recovery system

  • Architecture Integrated Hybrid energy recovery via Motor Generator Units
  • Crankshaft coupled electrical MGU-K
  • Turbocharger coupled electrical MGU-H
  • Energy store Lithium-Ion battery, between 20 and 25 kg
  • Maximum energy storage, 4 MJ per lap
  • MGU-K Maximum speed, 50000 rpm
  • Maximum power, 120 kW
  • Maximum energy recovery, 2 MJ per lap
  • Maximum energy deployment, 4 MJ per lap
  • MGU-H Maximum speed >125000 rpm
  • Maximum power, unlimited
  • Maximum energy recovery, unlimited
  • Maximum energy deployment, unlimited

under the hood transmission

  • Gearbox Carbon fibre composite main case, longitudinally mounted
  • Gear ratios Eight forward and one reverse
  • Gear selection Electro-hydraulically operated seamless shift
  • Differential Epicyclic differential with multi-plate limited slip clutch
  • Clutch Electro-hydraulically operated, carbon multi-plate

“When it comes to the heatshield, we don’t put any gold foil on it. But you will be able to find gold foil on the MCL35 chassis. It’s used to reflect infrared rays.”


Steve Foster, Principal Composites Engineer

2020 F1 Testing MCL35

The MCL35 will make its official on-track debut during pre-season testing at the Circuit de Barcelona-Catalunya in Spain on 19 – 21 February and then again from 26 – 28 February. Carlos and Lando will share the driving duties across both tests.

Source et images :
McLaren Racing
McLaren Applied Technologies

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *